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The influence of disturbances on the performance of a time optimal 
linear system is considered when the control is subject to restricting 
conditions. 

1. We shall consider an object, the state of which is determined by 

the elements of the column matrix e(t), and the law of motion of which 

is given by the system of linear differential equations 

i=AW-BufCF (1-l) 

where A is a square matrix, and B and C are rectangular, with time-in- 

dependent elements; 14 t), F(t) are, respectively, colunm matrices of the 

control functions and external actions. 

As in the book [ll, we shall assume that the control region is a 
closed convex bounded polyhedron in the two-dimensional space with co- 
ordinates u’, u , . . . , u’. 2 where the ur*s are the elements of the con- 

trol matrix. 

The problem of finding the control u(t) which moves the solution 

point from a position S = &, to th e origin of the coordinates of the 
phase space 5 in a minimal time, is solved in the book [l]. It is shown 
that this problem can have solutions for some conditions imposed on F, 
only if A, B, C and F are known exactly. 

We shall assume now, that the characteristics of the object (A, B, C), 

and the external forces F are random and only their statistical charac- 
teristics are known beforehand. In that case it is possible to construct 
an optimal control for the object having the expected characteristics 
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and for external forces equal to their mathematical expectation. How- 

ever, the realization of such a control for an object having random 
characteristics and subject to random external forces will not guarantee 
that the solution point will coincide with the origin of the coordinates 
at the end of the transient process. 

The problem is yet complicated by the fact that random errors can be 

made in the determination of the optimal control. 

The present work is concerned with the calculation of the dispersion 
of the phase coordinate at the end of the transient process and with 
the minimization of this dispersion by correcting the control. 

2. We shall consider first a simplified problem, assuming that the 

parameters of the object, determined by the matrices A, B, C, are known 
exactly, and that the external forces, and in some respect the control, 

are random. We shall denote the mathematical expectation of the external 
force by @, and its mean random component by o(F = 0 + 9). 

We shall assume that the optimal control function ZI = U which 

minimizes the duration of the transient process has been found when the 

object is subject to the expected external force CD. The control is a 

piece-wise continuous function with discontinuities (changes of the 

control) at the points tk (k = 0, 1, 2, . . . , n). We shall denote by Uk 

the control matrix in the interval of time tk < t < tktl. Let us denote 

by X the coordinates of the object during the transient process, and by 
X, their values at the instant tk. 

In the interval of time 

tk < t < tk+l 

the state of the object is determined by the following equation and the 

initial condition 

8=Ax+B&+C@, x (tk) = xk 

Its solution is the following, in matrix form [2l 

X = &t e-A’kXk + f e--Ap (BUk + CQJ+] 
'k 

(2.1) 

(2.2) 

It is then possible to find the relation between two successive 

values of the coordinate at instants of switching of the control function 

'k+l 

X k+l = e Atk+l 
c 

e-A’kXk + \ e-Ap (BUk + cm) dp] (2.3) 
‘k 
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We shall call unperturbed 

Let us now search for the 

the optimal transient process considered. 

perturbed transient process of the object 

(1.1). We shall assume that the control in that process has the same 

number of discontinuities and takes the same values as in the case of 

the unperturbed process, 

ti + Tk, 
however the switching occurs at instants 

where the -rk's are random values. 

Thus, in the interval of time 

tk + Tk < t < tk+l + tk+l (2.4) 

the control has the values U,, and the relation between the coordinates 

at the end and the beginning of the interval (2.4) is found by integra- 

tion of equation (1.1) 

6k+l = eXP [A (tk+l f ‘ck+l)l PP [- A (tk + zk)l tk f 

tk+l +=k+l 

+ \ e-*p (BUk + CF) dp] 
tk+rk 

(2.5) 

We shall consider the disturbances in the coordinates of the object 

%k = ck - xk at the instants of switching. Assuming that .%k# fk, 9, are 

small values, we shall linearize the relation (2.5). Taking (2.3) and 

(2.1) into consideration, we get as a result of the linearization 

‘k+l 

z&+1 = exp [A (t k+l--tk)lZk+ \ exPIA(tk+l-IL)lC~~)dC1+ 
‘k 

+ xc+, rk+l-exp [A (tk+l - tk)] .% zk (2.6) 

where k = 0, 1, 2, . . . . n - 1, and i,- and i,+ are the values of the 

velocity for the optimal transient process before and after the switch- 

ing at the inStSnt tk. We shall note that the values of the velocity 

before the first switching (&-) and after the final one (x,,') do not 

enter equation (2.6). 

We shall consider the first variant of the realization of an optimal 

control, when it is given in the function of time. Here the switching9 

occur at the instants tk + vk# where the errors Tk on the instants of 

switching are independent of x. Then (2.6) represents a linear differ- 

ence equation with respect to %k, and its solution can be constructed 

by a method analogous to that exposed in the book 131. The perturbation 

x, at the end of the transienttprocess is equal to 
n 

&, = exp [A (4, - to)1 z,, + six, [A (t, -~~lC~(p)dp++;~n+ 
t. 
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n-i 

+ zr 6xp [A (& -tk)l (k- JG+) rR - -P [A (48 - t,)] t,+z,, (2.7) 

Equation (2.7) can be rewritten in a more compact form 

48 

XVI = exp [A (t, - to)1 x0 + \exp 1A (t, - ~Wcpclzr + 

tr 

+ i exp [A 0, - tk)] Ak% (2.8) 

k=O 

if we denote 

Ak = h,- - ftk+ (2.9) 

and assume that 

jr,+ = 0, jr,- = 0 (2.10) 

we shall assume that the perturbations vk# x,,, 9 are independent of 

one another, and have a mathematical expectation equal to zero. ‘Ihen 

I&,,] = 0 and the matrix of the correlation instants [41 composing the 

column n, has the form 

D,x = exp [A (t, - to)lDo*exp [A’ (4, - to)1 + 

L tn ._ . 

+ss exp [A (t, y p)l CK, (p, v) C’ exp LA’ (t, - v)I dvdp -I-. 
i, i. 

+ i exp IA (4, - tk)] AkAk’ exp IA’ (t, - tk)] Dk’ (2.11) 
k=o 

Here ML.. .I is the operation of mathematical expectation; Kq~(cr, v) 

is the matrix of the correlation function composing q 

KP (P, v) = M [9-J 6) 9 (v) 1 (2.12) 

DkT = u[T~~I are the standard deviations of the instants.of switching 

of the controls; A’ is the transposed matrix of A, etc. 

‘Ihe trace of the correlation matrix D,,% can be used as a measure of 

the dispersion of n,. 

3. We shall consider another variant of the realization of an optimal 
control, when it is not given as a function of time as above, but as a 

function of the successive values of the phase coordinates of the object. 
The operation of the optimal system in the undisturbed transient process 
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is the following. A measurement of the phase coordinates X is made, and 

when the condition X = Xk is satisfied the control switches from the 

value Uk_l to the value Uk. ‘lhe corresponding phase trajectory is shown 

by the thick. line on Fig. 1. In the presence of perturbations g, the 

switching should not be made on points of the phase space, but on some 
switching hypersurface 

s* Gkl = 0 (k = 1, 2, * . ., n) 

These surfaces are also represented in Fig. 1. The light lines re- 

present the phase trajectories corresponding to different random real- 

izations of the perturbation q(t). 

In order to take into account the inaccuracies of the measurement of 

the phase coordinates of the object, we shall assume that the moments 

of the controls are determined by the equation 

$ (:k - YJ = 0 (k = 1, 2,. . ., n) (3.1) 

Here the measurement errors yK are random values, thus the equation 

(3.4) determines a family of surfaces on which the kth switching occurs. 

Then the value U,_, of the control is replaced by the value Uk. 

Taking into consideration that gk = Xk + zk and assuming that the 

perturbations xk and the errors yk are small, we shall find an approxi- 

mate equation of the switching hypersurface 

qk tXk) + mk (‘k - !ik) = ’ (3.2) 

Here mk is a row matrix, consisting of the derivatives with respect 

to s’s for g = Xk of the scalar function yk(c), 

In the absence of perturbations, 

y& = 0, “k = 0, and the switchings 

occur for c = X&. 

There follows from (3.2) 

qtp, (XX) = 0 (3.3) 

/ x 
I **I 

and the equation of the switching 

Fig. 1. hypersurfaces takes the simple form 

mkxk = mk~k (3.4) 

‘Ihis is the equation of the hyperplane tangent to the hypersurface 

(3.1). l3y virtue of the randomness of yk# there is a family of parallel 
switching hyperplanes (3.4). The matrix flk determines their comnon 
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normal vector, whereupon its components are proportional to the corre- 

sponding elements of Ink. We shall note that ~~(5) are as yet arbitrary 

functions depending upon the condition (3.3). There follows that the 

elements of the matrices mk are arbitrary numbers, and it can be hoped 

that by making an appropriate choice, it would be possible to reduce 

the dispersion of the phase coordinates at the end of the transient 

process. 

First we shall find the statistical properties of this dispersion. 

'lbe relation (2.6) is still valid in the present case, although the 

values vk are not independent any more, and must be determined from the 

equation of the switching surfaces (3.4). For further use, it is con- 

venient to write the equation (2.6) in the following form: 

Gz 

%+I =Qk (xk - kk+rk) + \pk @) c(p 01) + -+ kk+;rk+l (3.5) 

Here the notations are the following 

Qk = exp [A (tkfl - fk)] 

& (fh! = 
i 

0 (to d p d $1 

exp IA (tk+1- k# (tk < p d $+I) 

I O ($+I < P \< td 

substituting the expression of %k+l given by the equation 

the equation of the switching surface (3.4) we find Tk+l 

(3.6) 

(3.5) into 

rk3-1 = 
mk+l 

mk+12k- 
yk - Qk (xk - xk+%k) - 

s 
Pk C@p 

t. 
1 (3.7) 

Using the equations (3.5) and (3.7) we obtain the expression 

zk+l- %k+hk+l=TkQk(zk- xk+rk) + rk j'~k%$ + Pk?,k+l (3.8) 

1. 

Here we have introduced the notation 

Pk = 
*k+lmk+, 

mk+&+l ’ 
Tk==--P k 

whereby E is the unit matrix of appropriate order, and bk is determined 
by the equation (2.9). 'Ihe numerator of the expression for Pk is a 

square matrix and the denominator a number. 'Uris follows from the fact 

that bk+l is a column matrix and mk+l a row matrix with the same number 

of components. 
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‘Ihe equation (3.7) is a linear difference equation with respect to 

nk - Xk+va and its solution can be found as previously. In as much as 

the condition (2.10) is satisfied, the expression xn - k,,‘v,., coincides 

with the unknown value x,, 

h 

z* = 
s 

8 @L) c’$ @) & + i TkYk + fi (20 + WO) (3.10) 

t. k’=l 

Here the notation is the following: 

n-l 

(3.11) 

Tk =. r,,,Qn-a . . ., rkQkPk_-l 

n = r,,Qn--1, . . .s roQe 

We shall assume that the values yk, x0, T,, are statistically inde- 

pendent of one another and have a mathematical expectation equal to 

zero. ‘Ibe probability characteristics of n, are found by using equation 

(3.10) 

M [L&l = 0 

43 k 

D,= = 
ss S (p) CK, tp, 9 C’S’ W dv+ + 
1. t. 

+ i TkDk’Tk’ + n (Dox + AsA,,‘DDoT) II’ 
k==l 

(3.12) 

where DkY is the correlation matrix of the measurement errors, and D,,” 

of the errors on the initial condil 

tions; 0,' . IS the standard deviation 

70’ 

Fig. 2. 

As a measure of the dispersion of 

the coordinates at the end of the 

transient process, it is possible to 
take the trace of the matrix 0," or 

any other quantity composed of its 
elements. We shall denote by I the 

chosen measure. It appears as a com- 

plicated function of the row matrices 
mk which compose it. In order to re- 

duce the dispersion of x, it is 

possible to choose an mk such that 
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the quantity 1 has its minimal value. 

\Ve shall call optimal the position of the switching hyperplane (3.4) 

corresponding to these values of mk. 

4. Let us consider an example. Let the transient process of the 

object be defined by the following equation and initial conditions: 

Z=r(+cp, 20 >o, ’ 20 = 0 

The domain of control is I al d 1. 

We shall write the equations and the initial conditions in the 
standard form 

g=~f+~u+Ccp (4.1) 

where 

The solution of the problem for 9 = 0 is given in the book [d. The 
corresponding phase trajectory is given in Fig. 2. It consists of two 
sections of parabolas. The transient process lasts a time T = 24 to 
where II = U,, = -1 for the first half of the time and u = 111 = 1 for the 
second. 

We shall note that the equation of the tangent I (Fig. 2) to the 
second parabola at the point of switching of the control has the form: 

2 
2% + r 2‘ = 0 (4.3) 

Here the indices above the letters denote the number of the component 
of the corresponding column. Equation (4.3) is the equation of the 
tangent to the “switching curve” at the switching point for the undis- 
turbed optimal process. The notion of “switching curve” in the present 
case is the same as in the book [ll. 

Considering now the influence of the disturbances on this transient 
process, we shall gssume that the errors on the switching instants in 
the first variant of realization of optimal control and the errors on 
the measurement of the phase coordinates in the second are equal to 
zero, i.e. ov=0 DYZO DX= 

’ k ’ 0 0. By virtue of the special form of 
the matrix A, we have 

eA’=E+At= 
1 t 

II I 
I 

0 iI 
(4.4) 

Therefore the trace of the matrix of the correlation moments of x,. 
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determined by the equation (2.11) has the following expression: 

TT 

rI=sp+ 
ss 

[Pk P--v)+il&JB, v)dvdlr (4.5) 
00 

If the control is a function of the phase coordinates of the object, 
then the dispersion of the coordinates at the end of the transient pro- 
cess is determined by the formula (3.12). The values entering this equa- 
tion have the following form 

f1+=_ 2,+=0 

Here we have introduced the notation 

ml1 ms’ 
al= - ml1 ’ aa = - 

mn” 

where BI’, a2 are components of the a matrices. 

We shall substitute the required expressions 
we shall compute the trace of the matrix of the 

%n 

into (3.11). (3.12) and 
correlation moments of 

I = sp 4” =I (4.6) 

The notation is the following: 

Tls Tla Tla T 

Ml= wX,(~r, v)dvd& MS= 
ss 

P (* - v) f$ b‘t v) dvdlr 
o T/2 

T l’ (4.7) 

Ma= . 
ss 

P’ - 14 (* - v) KEp (CL, VI dvdlr 

T/2 T/s 

The quantity (4.6) reaches its minimal value 

I,&&-~ 
1 

(4.3) 
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for the following values of al and ax: 

2 ~--MI/M, 
al+=y I+Ma/M1’ ap=o 

697 

@.9) 

If we assume a2 = 0, and if the curve (4.3) (al = 2/T) is taken as 
the curve of the first switching, the dispersion of the coordinates is 
determined by the value 

III== MS (4.10) 

We shall compare the quantities I,, I2 and I3 for two aspects of 
random perturbations: in the case of a small and of a large correlation 
time. If the correlation time is much smaller than T, we can write for 
the calculation 

Kq (P, v) = H6 (P - v) 

where 6 is the delta-function, and H = constant. 

The computation gives 

For a disturbance of the type considered, the optimal position of the 
switching curve for which I is minimal, coincides with line 1. Random 
phase trajectories for that case are shown in Fig. 3. If the correlation 

Fig. 3. Fig. 4. 

time of the random process 9 is much larger than the time of the undis- 

turbed transient process T, then we can take approximately 

K, (P, V) = A = const 
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The corresponding calculation yields 

The OPtiIIIal Position of the switching curve, when the object is 
subject to the action of disturbances with a large correlation time is 
shown in Fig. 4. 

5. We shall give, without derivation, the equations analogous to 
(2.11) and (3.12), when the characteristics of the object are also 
random and are determined hy the matrices A + cb, B + b and C + c, where 
a, b, c are centered random components which we shall consider small. 

If the optimal control is realized in the function of time, then the 

correlation matrix of the moments of x, takes the form 

D,," = exp [A (tn - to)] Dar exp [A’ (tn - to)1 -I- i exp [A (tn - &)I Ak x 
k=o 

x Ak' exp [A’ (t,, - tk)lDk+ -i- (+i” exP IA (t, -+I [C.&x (~9 v) (2’ + 
t* t. 

When the optimal control is realized in the function of the phase co- 
ordinates of the object, the correlation matrix of the dispersion is 

the following: 

In equations (5.1) and (5.2) the matrix N has the following meaning: 

N(p,v) = M t(aX@) + bU(l.4 + d(p)) Gw) a’ i- ~‘(4 b’ + @‘(VI 01 

'lhe remaining notation is the same as previously. 
(5.3) 

Let us assume for instance that the behavior of the object is de- 
scribed by the equation 

T = (1 + 8) u (5.4) 

where E is a small random quantity with a zero average value. We shall 
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take the initial conditions and the limitations for the control identi- 
cal as those of Section 4. Then the undis- 
turbed transient process (for E = 0) and 
the parameters of the equation of the 
object in standard form will be the same 
as in Section 4 and the matrix b takes 
the form 

b=Ce (5.5) 

The comparison of the corresponding 
equations shows that the solution of the 
problem of the dispersion at the end of 
the transient process in the present 
case is given by the equations (4.5). 

(4.6). (A.?) and (4.9) if Kg,@& E) is 
replaced in these equations.by D’U(LQV(V) 

where DE is the standard deviation E. 
Fig. 5. 

The results of the computation are the following: 

T4 
up = 00 , Il=DEG 

Iz = 0, 
T4 

13 = &a 

The optimal position of the switching surfaces and the random phase 

trajectories are shown in Fig. 5. 

1. 

2. 

3. 

4. 
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